Content introduction:
- Thrombopoietin receptor–independent stimulation of hematopoietic stem cells by eltrombopag
- Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression
- Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease
- ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone
- Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production
1. Thrombopoietin receptor–independent stimulation of hematopoietic stem cells by eltrombopag
Eltrombopag (EP), a small-molecule thrombopoietin receptor (TPO-R) agonist and potent intracellular iron chelator, has shown remarkable efficacy in stimulating sustained multilineage hematopoiesis in patients with bone marrow failure syndromes, suggesting an effect at the most immature hematopoietic stem and multipotent progenitor level. Although the functional and molecular effects of EP on megakaryopoiesis have been studied in the past, mechanistic insights into its effects on the earliest stages of hematopoiesis have been limited. Yun-Ruei Kao at Albert Einstein College of Medicine in Bronx, USA and his colleagues investigated the effects of EP treatment on hematopoietic stem cell (HSC) function using purified primary HSCs in separation-of-function mouse models, including a TPO-R–deficient strain, and stem cells isolated from patients undergoing TPO-R agonist treatment. Their mechanistic studies showed a stimulatory effect on stem cell self-renewal independently of TPO-R. Human and mouse HSCs responded to acute EP treatment with metabolic and gene expression alterations consistent with a reduction of intracellular labile iron pools that are essential for stem cell maintenance. Iron preloading prevented the stem cell stimulatory effects of EP. Moreover, comparative analysis of stem cells in the bone marrow of patients receiving EP showed a marked increase in the number of functional stem cells compared to patients undergoing therapy with romiplostim, another TPO-R agonist lacking an iron-chelating ability. Together, their study demonstrates that EP stimulates hematopoiesis at the stem cell level through iron chelation–mediated molecular reprogramming and indicates that labile iron pool–regulated pathways can modulate HSC function.
Read more, please click http://stm.sciencemag.org/content/10/458/eaas9563
2. Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression
Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor (RyR2) has been suggested to play a mechanistic role in the development of heart failure (HF) and cardiac arrhythmia. Mice treated with a selective RyR2 stabilizer, rycal S36, showed normalization of SR Ca2+ leak and improved survival in pressure overload (PO) and myocardial infarction (MI) models. The development of HF, measured by echocardiography and molecular markers, showed no difference in rycal S36– versus placebo-treated mice. Reduction of SR Ca2+ leak in the PO model by the rycal-unrelated RyR2 stabilizer dantrolene did not mitigate HF progression. Development of HF was not aggravated by increased SR Ca2+ leak due to RyR2 mutation (R2474S) in volume overload, an SR Ca2+ leak–independent HF model. Arrhythmia episodes were reduced by rycal S36 treatment in PO and MI mice in vivo and ex vivo in Langendorff-perfused hearts. Isolated cardiomyocytes from murine failing hearts and human ventricular failing and atrial nonfailing myocardium showed reductions in delayed afterdepolarizations, in spontaneous and induced Ca2+ waves, and in triggered activity in rycal S36 versus placebo cells, whereas the Ca2+ transient, SR Ca2+ load, SR Ca2+ adenosine triphosphatase function, and action potential duration were not affected. Rycal S36 treatment of human induced pluripotent stem cells isolated from a patient with catecholaminergic polymorphic ventricular tachycardia could rescue the leaky RyR2 receptor. These results suggest that SR Ca2+ leak does not primarily influence contractile HF progression, whereas rycal S36 treatment markedly reduces ventricular arrhythmias, thereby improving survival in mice.
Read more, please click http://stm.sciencemag.org/content/10/458/eaan0724
3. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease
Huntington’s disease (HD) is a genetic progressive neurodegenerative disorder, caused by a mutation in the HTT gene, for which there is currently no cure. The identification of sensitive indicators of disease progression and therapeutic outcome could help the development of effective strategies for treating HD. Lauren M. Byrne at University College London (UCL) Institute of Neurology in London, UK and his colleagues assessed mutant huntingtin (mHTT) and neurofilament light (NfL) protein concentrations in cerebrospinal fluid (CSF) and blood in parallel with clinical evaluation and magnetic resonance imaging in premanifest and manifest HD mutation carriers. Among HD mutation carriers, NfL concentrations in plasma and CSF correlated with all nonbiofluid measures more closely than did CSF mHTT concentration. Longitudinal analysis over 4 to 8 weeks showed that CSF mHTT, CSF NfL, and plasma NfL concentrations were highly stable within individuals. In their cohort, concentration of CSF mHTT accurately distinguished between controls and HD mutation carriers, whereas NfL concentration, in both CSF and plasma, was able to segregate premanifest from manifest HD. In silico modeling indicated that mHTT and NfL concentrations in biofluids might be among the earliest detectable alterations in HD, and sample size prediction suggested that low participant numbers would be needed to incorporate these measures into clinical trials. These findings provide evidence that biofluid concentrations of mHTT and NfL have potential for early and sensitive detection of alterations in HD and could be integrated into both clinical trials and the clinic.
Read more, please click http://stm.sciencemag.org/content/10/458/eaat7108
4. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone
Osteoarthritis is the most common joint disorder with increasing global prevalence due to aging of the population. Current therapy is limited to symptom relief, yet there is no cure. Its multifactorial etiology includes oxidative stress and overproduction of reactive oxygen species, but the regulation of these processes in the joint is insufficiently understood. Frederique M. F. Cornelis at Skeletal Biology and Engineering Research Center in KU Leuven, Belgium and his colleagues report that ANP32A protects the cartilage against oxidative stress, preventing osteoarthritis development and disease progression. ANP32A is down-regulated in human and mouse osteoarthritic cartilage. Microarray profiling revealed that ANP32A protects the joint by promoting the expression of ATM, a key regulator of the cellular oxidative defense. Antioxidant treatment reduced the severity of osteoarthritis, osteopenia, and cerebellar ataxia features in Anp32a-deficient mice, revealing that the ANP32A/ATM axis discovered in cartilage is also present in brain and bone. Their findings indicate that modulating ANP32A signaling could help manage oxidative stress in cartilage, brain, and bone with therapeutic implications for osteoarthritis, neurological disease, and osteoporosis.
Read more, please click http://stm.sciencemag.org/content/10/458/eaar8426
5. Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production
Phospholipase C (PLC) enzymes hydrolyze the plasma membrane (PM) lipid phosphatidylinositol 4,5-bisphosphate (PI4,5P2) to generate the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) in response to receptor activation in almost all mammalian cells. Rafael Gil de Rubio at University of Rochester in Rochester, USA and his colleagues previously found that stimulation of G protein–coupled receptors (GPCRs) in cardiac cells leads to the PLC-dependent hydrolysis of phosphatidylinositol 4-phosphate (PI4P) at the Golgi, a process required for the activation of nuclear protein kinase D (PKD) during cardiac hypertrophy. They hypothesized that GPCR-stimulated PLC activation leading to direct PI4P hydrolysis may be a general mechanism for DAG production. They measured GPCR activation–dependent changes in PM and Golgi PI4P pools in various cells using GFP-based detection of PI4P. Stimulation with various agonists caused a time-dependent reduction in PI4P-associated, but not PI4,5P2-associated, fluorescence at the Golgi and PM. Targeted depletion of PI4,5P2 from the PM before GPCR stimulation had no effect on the depletion of PM or Golgi PI4P, total inositol phosphate (IP) production, or PKD activation. In contrast, acute depletion of PI4P specifically at the PM completely blocked the GPCR-dependent production of IPs and activation of PKD but did not change the abundance of PI4,5P2. Acute depletion of Golgi PI4P had no effect on these processes. These data suggest that most of the PM PI4,5P2 pool is not involved in GPCR-stimulated phosphoinositide hydrolysis and that PI4P at the PM is responsible for the bulk of receptor-stimulated phosphoinositide hydrolysis and DAG production.
Read more, please click http://stke.sciencemag.org/content/11/547/eaan1210
没有评论:
发表评论