Topics overview: VEGF-C as a predictive biomarker for immunotherapy response, peptide probes could become an early diagnostic strategy, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production, rapid antigen tests for dengue virus serotypes and Zika virus, integrated hepatitis B virus DNA is a source of HBsAg.
1. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma
In melanoma, vascular endothelial growth factor–C (VEGF-C) expression and consequent lymphangiogenesis correlate with metastasis and poor prognosis. VEGF-C also promotes tumor immunosuppression, suggesting that lymphangiogenesis inhibitors may be clinically useful in combination with immunotherapy. Manuel Fankhauser at Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland and his colleagues addressed this concept in mouse melanoma models with VEGF receptor–3 (VEGFR-3)–blocking antibodies and unexpectedly found that VEGF-C signaling enhanced rather than suppressed the response to immunotherapy. They further found that this effect was mediated by VEGF-C–induced CCL21 and tumor infiltration of naïve T cells before immunotherapy because CCR7 blockade reversed the potentiating effects of VEGF-C. In human metastatic melanoma, gene expression of VEGF-C strongly correlated with CCL21 and T cell inflammation, and serum VEGF-C concentrations associated with both T cell activation and expansion after peptide vaccination and clinical response to checkpoint blockade. They propose that VEGF-C potentiates immunotherapy by attracting naïve T cells, which are locally activated upon immunotherapy-induced tumor cell killing, and that serum VEGF-C may serve as a predictive biomarker for immunotherapy response.
Read more, please click http://stm.sciencemag.org/content/9/407/eaal4712
2. Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients
Increasing evidence supports the hypothesis that soluble misfolded protein assemblies contribute to the degeneration of postmitotic tissue in amyloid diseases. However, there is a dearth of reliable nonantibody-based probes for selectively detecting oligomeric aggregate structures circulating in plasma or deposited in tissues, making it difficult to scrutinize this hypothesis in patients. Hence, understanding the structure-proteotoxicity relationships driving amyloid diseases remains challenging, hampering the development of early diagnostic and novel treatment strategies. Joseph D. Schonhoft at The Scripps Research Institute in La Jolla, USA and his colleagues report peptide-based probes that selectively label misfolded transthyretin (TTR) oligomers circulating in the plasma of TTR hereditary amyloidosis patients exhibiting a predominant neuropathic phenotype. These probes revealed that there are much fewer misfolded TTR oligomers in healthy controls, in asymptomatic carriers of mutations linked to amyloid polyneuropathy, and in patients with TTR-associated cardiomyopathies. The absence of misfolded TTR oligomers in the plasma of cardiomyopathy patients suggests that the tissue tropism observed in the TTR amyloidoses is structure-based. Misfolded oligomers decrease in TTR amyloid polyneuropathy patients treated with disease-modifying therapies (tafamidis or liver transplant–mediated gene therapy). In a subset of TTR amyloid polyneuropathy patients, the probes also detected a circulating TTR fragment that disappeared after tafamidis treatment. Proteomic analysis of the isolated TTR oligomers revealed a specific patient-associated signature composed of proteins that likely associate with the circulating TTR oligomers. Quantification of plasma oligomer concentrations using peptide probes could become an early diagnostic strategy, a response-to-therapy biomarker, and a useful tool for understanding structure-proteotoxicity relationships in the TTR amyloidoses.
Read more, please click http://stm.sciencemag.org/content/9/407/eaam7621
3. Human pluripotent stem cell–derived erythropoietin-producing cells ameliorate renal anemia in mice
The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. Hirofumi Hitomi at Center for iPS Cell Research and Application, Kyoto University in Kyoto, Japan and his colleagues established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain–containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia.
Read more, please click http://stm.sciencemag.org/content/9/409/eaaj2300
4. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum
The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. Irene Bosch at Massachusetts Institute of Technology in Cambridge, USA and her colleagues report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1–4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, they used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1–4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction–positive patient urine samples. Their rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.
Read more, please click http://stm.sciencemag.org/content/9/409/eaan1589
5. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg
Chronic hepatitis B virus (HBV) infection is a major health concern worldwide, frequently leading to liver cirrhosis, liver failure, and hepatocellular carcinoma. Evidence suggests that high viral antigen load may play a role in chronicity. Production of viral proteins is thought to depend on transcription of viral covalently closed circular DNA (cccDNA). In a human clinical trial with an RNA interference (RNAi)–based therapeutic targeting HBV transcripts, ARC-520, HBV S antigen (HBsAg) was strongly reduced in treatment-naïve patients positive for HBV e antigen (HBeAg) but was reduced significantly less in patients who were HBeAg-negative or had received long-term therapy with nucleos(t)ide viral replication inhibitors (NUCs). HBeAg positivity is associated with greater disease risk that may be moderately reduced upon HBeAg loss. The molecular basis for this unexpected differential response was investigated by Christine I. Wooddell at Arrowhead Pharmaceuticals in Madison, USA and his colleagues in chimpanzees chronically infected with HBV. Several lines of evidence demonstrated that HBsAg was expressed not only from the episomal cccDNA minichromosome but also from transcripts arising from HBV DNA integrated into the host genome, which was the dominant source in HBeAg-negative chimpanzees. Many of the integrants detected in chimpanzees lacked target sites for the small interfering RNAs in ARC-520, explaining the reduced response in HBeAg-negative chimpanzees and, by extension, in HBeAg-negative patients. Their results uncover a heretofore underrecognized source of HBsAg that may represent a strategy adopted by HBV to maintain chronicity in the presence of host immunosurveillance. These results could alter trial design and endpoint expectations of new therapies for chronic HBV.
Read more, please click http://stm.sciencemag.org/content/9/409/eaan0241